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Sound generation by the Lighthill quadrupole is an important mechanism in the 
noise of supersonic and transonic propellers. Full numerical calculation of the 
quadrupole radiation must, however, require knowledge of the flow a t  all points 
exterior t o  the blades (involving transonic aerodynamics) and the evaluation of 
special functions. Wc describe how thesc difficulties may be largely avoided, using an 
asymptotic approximation that the number of blades, B, is large, and prove that to  
leading order the problem of the radiation in a given direction reduces to one of 
determining the (two-dimensional) flow field a t  just one radial station, legitimately 
achieved by linearized supersonic analysis. Simple formulae are derived for the far- 
field acoustic pressure generated by unswept blades, from which absolute level 
predictions can be made accurately and quickly. These formulae predict a 
significantly greater intensity, over broad angular ranges, than is predicted by the 
linear theory for thickness noise sources. 

1. Introduction 
The study of sound generation by rotating propeller blades has a long history, 

some of the earliest theoretical work having been carried out by Lynam & Webb 
(1919), and extended by such workers as Gutin (1936), Deming (1937, 1938) and 
Garrick & Watkins (1954). 

However, the subject has taken on new importance over the last ten years, with 
the advent of the ‘propfan ’, and related ultra-high-bypass engines, as possible 
powerplants for future generations of passenger aircraft. The wide variety of noise 
issues which have arisen, including the aeroacoustics of rapidly moving bodies, 
effects of complex blade geometry and the possible interactions between contra- 
rotating blade rows in certain propfan configurations, has attracted much research, 
both experimental and theoretical, up to the point where full-scale prototypes have 
been flight-tested on civilian transport aircraft. The key question, however, as yet 
unanswered, is whether such engines will satisfy existing noise regulations, and 
possibly more stringent ones in the future, relating to environmental noise, and 
whether they will lead to sufficiently low levels of cabin noise for passenger comfort. 

It is therefore of great importance to develop accurate prediction schemes to 
handle these difficult problems, and much progress has been achieved, perhaps most 
notably by Hanson (1980, 1983), whose frequency-domain approach we adopt here, 
and by Farassat (1981). The basic formulation is in terms of the Ffowcs Williams & 
Hawkings (1969) equation, which is a generalization of the Lighthill acoustic analogy 
to include force and thickness terms. The equation gives an integral prescription for 
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the sound field in terms of three distributed sources: monopoles, dipoles and 
quadrupoles. The monopoles and dipoles, corresponding to volume displacement 
effects and to lift and drag forces on the blade respectively, are distributed across the 
blade surface (and not in general the blade mid-chord), whilst the quadrupoles, 
associated with nonlinear effects a t  high speed, are spread over some volume around 
the blades. Calculation of the acoustic field requires, a priori, an explicit specification 
of the source terms, together with the motion of the surfaces, which will of course 
themselves depend on the global flow field. Even if the surface sources are supposed 
calculable by steady (and perhaps linear) aerodynamics, the problem of determining 
the quadrupole distribution remains. Here, indeed, explicit solutions have so far only 
been achieved for the most simple geometries and motions, e.g. a one-dimensional 
unsteady piston motion and a two-dimensional supersonic steady wedge motion 
(Blackburn 1982 ; Ffowcs Williams 1979). 

Numerical studies have been taken further, for instance by Hanson & Fink (1979), 
who were able to  calculate the quadrupole strength at  each point on, and in the 
vicinity of, a rotating blade, and thereby estimate the additional noise levels due to 
the quadrupole nonlinearity. In  their approach, however, the quadrupole input to 
the Ffowcs Williams & Hawkings equation must be calculated using steady 
aerodynamic codes, which proves especially difficult for those areas of the blade 
moving transonically, in addition to which certain generic Bessel functions must be 
computed a t  each point on the blade span and chord, a t  great expense in CPU time. 
Moreover, a full numerical calculation cannot possibly yield the same level of 
physical insight as a closed algebraic expression, nor provide any of the scaling laws 
so useful for design purposes. 

In  what follows here, we describe an approach which provides simple algebraic 
expressions for the quadrupole noise due to a supersonically rotating propeller, 
avoiding the necessity for transonic calculations and the evaluation of special 
functions. Our basic simplification, first suggested as a high-frequcnoy approximation 
by Hawkings & Lowson (1974), and used to  good effect by Parry & Crighton (1989a, 
b )  and Crighton & Parry (1990a, 6 )  in the evaluation of the monopole and dipole 
noise, is that the number of blades, B, is large. The frequency-domain radiation 
integrals can then be evaluated using standard asymptotic techniques, in the limit 
mB+ 00, for all harmonic numbers m = 1 ,2 ,  .... While this might seem an 
unwarranted simplification, previous experience has shown that even only B = 4 
produces good agreement with a full numerical solution, and still better agreement 
for more typical modern values of 8 or 12. Following this procedure, only the 
quadrupole strength at  the leading and trailing edges of just one blade cross-section 
need be calculated for any given observer location, which is achieved using just 
linearized supersonic flow theory, and represents a major simplification of the 
Hanson & Fink method. 

A detailed analysis of the transonic flow region on the blade is in general not 
necessary, for the essence of the asymptotic technique is that it shows that, in the 
limit B --f 00,  the radiation in a given direction comes from a particular blade section, 
called the Mach radius (for that radiation angle), which is not a section of transonic 
flow, except for reception directions very close to the propeller disk plane. For such 
shallow reception angles, transonic flow codes are admittedly necessary, but even 
here the asymptotic technique helps considerably in limiting the information needed 
from those codes to the specification simply of the behaviour a t  the chordwise 
extremities of the blade at the Mach radius. Equally, in the case of a subsonic 
propeller, asymptotic theory would reduce the problem to one of determining the 
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FIQURE 1 .  The definition of the emission coordinates, for an observer positioned in the 
horizontal plane, of a single-rotation propeller. 

flow a t  just the blade tip, which would in itself be a very difficult problem 
numerically, but could well be amenable to experiment. 

A rigorous application of the Ffowcs Williams & Hawkings equation requires that 
the surface terms (the steady loading and the thickness) be positioned on the genuine 
blade surfaces, and not, as is so often done, on the mean plane between them. The 
latter description is valid only when the source region is compact, and it has been 
shown (Ffowcs Williams & Hawkings 1969, §6), that transfer to the mean plane is 
certainly not adequate when the airfoil thickness is comparable with the Doppler- 
shifted wavelength, and in particular that  great care must be exercised when 
considering Mach radiation, for which the effective Doppler frequency is infinite. 
Since Hanson’s frequency-domain radiation integrals (taken as the starting point of 
our analysis) rely on the thin-blade approximation, and since the dominant 
contributions to the sound field at infinity will come from sources exactly satisfying 
the Mach wave condition, it is prudent to  modify Hanson’s (1980) work to include 
arbitrary blade thickness, and the new formula for the steady loading noise is given 
in Appendix C. It turns out that the error introduced in displacing the force 
singularities onto the midchord will be in the phase of the harmonics and in the 
higher derivatives of the steady loading real-time waveform, and that therefore use 
of the thin-blade approximation will be fully justified for calculating the lower 
harmonics of, and the sound pressure level due to, the surface dipole distribution. 
The essential reason is that  azimuthal interference effects between the periodically 
spaced blades make compactness on the scale of the axially Doppler-contracted 
wavelength the sufficient condition for the thin-blade approximation. However, a 
qualitatively reliable estimate of the total radiated sound field (i.e. the sum of steady 
loading, thickness and quadrupole components) can only be made when proper 
account is taken of the non-vanishing airfoil thickness. Even for the lowest 
harmonics the error introduced by moving the force terms onto the midchord is of 
formally the same order in airfoil thickness (i.e. order thickness squared) as the 
Lighthill quadrupole term calculated in this paper, and, as argued above, this error 
becomes even more significant for large values of m. Accurate noise calculations for 
supersonic propellers therefore require the use of the Ffowcs Williams & Hawkings 
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equation in its full form, and in the frequency domain this must entail use of the 
expression in Appendix C for the steady loading noise, together with the Lighthill 
radiation integral in equation (1). 

It might prove possible to regard the calculation of the quadrupole fields as 
corresponding simply to  the (nonlinear) propagation of the shocks attached to the 
blade edges - as indeed is suggested by the model calculations of Ffowcs Williams 
(1979) and Blackburn (1982) for one-dimensional unsteady or two-dimensional 
steady problems. However, the equivalence has not been proved in general, nor 
would i t  be helpful if one wants to calculate harmonic components of the sound in 
a frame fixed in the fluid at infinity. The propagation/distortion is equivalent to 
modification of the harmonic components, and the aeroacoustic analogy states that 
that modification can be calculated, as here, by evaluating the quadrupole integral. 

2. Mathematical formulation 
The starting point for our analysis is a modified form of an equation derived by 

Hanson (1980) for the mth harmonic of the acoustic pressure due to the Lighthill 
(1952) quadrupoles, 

( [i l-M,cosB M t p o  I) poc:Bexp imB -IT- 
p,"=- 

4 ~ ~ 0 ~ 1 - ~ z c 0 s e )  

Here 8 and Po are emission coordinates, measured by an observer in the far field; their 
meaning is made clear in figure 1. A tilde denotes normalization of a length with 
respect to blade span, The integration is along the radius (span) of the propeller, 
spanwisc coordinate r being normalized with respect to the propeller radius to give 
z, which runs from zo at the hub to 1 a t  the t ip;  M, is the helical Mach number a t  each 
radial station, Mt the tip rotational Mach number, and M, the axial (flight) Mach 
number. 

We now go on to consider the blade geometry. I n  Hanson's (1980) presentation of 
equation (l), helical coordinates yo and to, along and perpendicular to the 
propeller-advance helix, are defined, and since the blade is supposed twisted (so that 
each section moves parallel to  its chord), the system yo, to, r is non-orthogonal. 
Furthermore, derivation of (1) involves calculation of a covariant tensor, whose 
transformation properties are not the simple Cartesian ones assumed by Hanson, 
and therefore some modifications are needed to Hanson's analysis. In  this paper we 
therefore use a Cartesian system (at rest in the fluid, but coincident with the blade 
at some early initial instant t = 0, well before the blade radiates) y ,  6, r ,  where r is 
aligned along the radius of one blade at t = 0, and y and 6 are perpendicular axes in 
the plane of the blade section at the Mach radius; see equation (8) ff. This is made 
clear in figure 2 ( a ) .  Justification for this lies entirely in the large-B asymptotic 
formulation, and is in two stages. First, the z-integral of (1) is dominated (for mB 
large) by a region of length (mB)-g about the Mach radius, over which the angle of 
twist of Hanson's yo and E0 helicoidal coordinate axes will vary by an asymptotically 
small amount, permitting the use of just those axes defined at the Mach radius, a t  
least to leading order. Second, the main contribution to the far-field quadrupole 
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FIGURE 2. (a )  The orthogonal coordinate system along a blade. (6) The airfoil cross-section with 
attached shocks at the leading and trailing edges. 

radiation is localized close to the blade edges (equation (21) ff.), so that the curved 
helicoidal axes yo and to can be replaced by the Cartesian axes y and t ;  the 
discrepancy between the two systems will again be asymptotically small, at least for 
small chord length. The whole process is entirely equivalent to the extension out to 
infinity of Cartesian axes localized a t  a stationary phase point. Therefore, Hanson's 
published quadrupole formulae can only be applied rigorously in the large-blade- 
number limit. A corrected derivation will be given in Peake & Crighton (1990), the 
results of which are exact for the non-orthogonal helicoidal coordinate system. The 
additional terms are found to give harmonic pressures smaller by a factor O(mB)-' 
than those quoted in this paper. 
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It is supposed that the blades are thin, so that thin-airfoil theory may be applied, 
and that the leading and trailing edges are sharp, so that any shocks remain 
attached. The normalized chord length F will be supposed to scale on B-"O,, for some 
positive a0 ; no attempt will be made in this paper to consider any cascade effects due 
to the change in propeller solidity with large B.  

Wavenumbers k, and k, are defined by 

mBM, E 
k, = 

M,( I -M, cos 0) ' 

k, = - 

whilst !Pi, and @, functions of z ,  correspond to section-integrated quadrupole 
strengths, with account taken for retarded-time variations across the chord, 

exp ( -ik,X) exp ( -  ik, Y )  

pi* = Jbj Po u: 
(3) 

PT,, exp ( - ik,X) exp ( - ik, Y )  

Po e 
where U, is the helical velocity of the blade cross-section, and the integration is taken 
over the whole plane of blade cross-section and X and Y correspond to y and 6 ,  
normalized by the blade chord length (figure 2 b ) .  Here Tii is the Lighthill acoustic 
stress tensor, which is written to  leading order in perturbation velocities in a form 
due to Schmitz & Yu (1979) as 

with r the ratio of specific heats. (Equation (4) is easily checked. One has exactly 

(5) Ti, = PO ui uj + [(P -PO) -G(P - P O ) ]  ' i f ,  

an assumed isentropic law 

and the standard result 

r 

Po 

P-Po =-Po(& (7)  

of linearized supersonic aerodynamics.) The @ term in ( 1 )  was missed out of Hanson's 
(1980) formulation ; however, although it may be supposed that the radial velocity 
perturbation (i.e. us)  is zero, there must still be a non-zero contribution to T33 from 
the isotropic part of the stress tensor (equation (4)). It is clear that, for large B, !Pii 
and @ are of the same order in mB, and hence that in (1) the last term is O(mB)p2 
smaller than the others, and will be neglected in the rest of this paper. For 
conventional propellers, with few blades, the T3, term would have to be included, and 
could become significant a t  high helical Mach numbers. 

I n  the asymptotic limit of large blade number B ,  the dominant behaviour of (1) 
will be determined by the exponential dependence on mB and z in the integrand, 
which arises from the Bessel function and Yii factors. When k, is held fixed (i.e. taken 
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independent of z ;  see $ 5  for a modification to account for spanwise variation in kx), 
Crighton & Parry (1990a) have demonstrated that thc dominant behaviour of the 
sound field, in their case the steady loading and thickness components, is determined 
by the magnitude of 

1 -Mx cos 8 
Nt sin 8 ’ 

z* = 

referred to  as the Mach radius. Mathematically, this is the point at which the Bessel 
function of (1) changes from exponential decay to rapid oscillation. For a propeller 
with subsonic tip speed, this parameter is always greater than unity, the acoustically 
weighted spanwise loading and thickness sources decay exponentially inboard from 
the tip z = 1, and so the largest contribution to  P comes from the tip. However, for 
a supersonic propeller, z* lies within the blade span for a significant range of observer 
positions, and so, by Laplace’s method, it is precisely the source a t  the Mach radius 
that makes the main contribution to the pressure. Moreover, the expression of 
Schmitz & Yu for Yir (equation (4)) is only good at  supersonic operating conditions, 
and so in this paper we do not address the question of quadrupole radiation 
generated by subsonic blade motion. 

The defining property of the Mach radius is that its velocity component a t  
emission, in the direction of the observer, is exactly sonic at some point in each 
revolution, i.e. 

M,z*sinB+M,cosB = 1. (9) 

However, the absolute velocity of such a point will be supersonic; for instance, the 
helical Mach number of the station z* corresponding to 8 = in would be (1  +Mi)+,  well 
into the supersonic regime a t  cruise conditions, while even at the low values of M ,  
relevant to  take-off operations the helical Mach number a t  z* (8)  will be supersonic for 
many angles ahead of the propeller, 0 < 8 < in. 

The expression in (1) can be characterized by the form 

It has been demonstrated (Hanson & Fink 1979) that Yij, and hence S ,  is maximal 
for those blade sections travelling in the transonic regime (in the neighbourhood of 
the sonic radius z = z s ) ,  and is small elsewhere ; according to linearized supersonic 
theory, the quadrupole strength will vary as (K-  l)-l,  inversely with distance from 
the sonic radius. However, as noted above, the Bessel function J,, decays 
exponentially rapidly inboard of the Mach radius, and certainly very much faster 
than the decay of S(z)  away from z = 2,. Since i t  is always the case that z, < z* (with 
equality only at one critical observer position defined later), the contribution from 
the sonic radius must bc negligibly (in fact, exponentially) small compared with that 
from the Mach radius, a fact not apparent when a purely numerical evaluation of ( 1 )  
is performed. 

Therefore, to obtain the first term in an asymptotic expansion in large B it is only 
necessary to calculate the source strength a t  the Mach radius, P y  becoming 

Z* 
S(z*)-+o - 

lmBl (1nt-J 
This is derived rigorously in Appendix A. In marked contrast, a numerical solution 
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would need to calculate the quadrupole over a whole range of radial stations, not 
merely at a single station. In the next section we demonstrate how an algebraic 
expression for X(z*) can be found simply from two-dimensional theory. 

3. Calculation of the quadrupole 
We adopt the same approach as Hanson & Fink (1979), who calculate the 

quadrupole strength associated with two-dimensional airfoil sections along the blade 
using steady subsonic, supersonic and transonic aerodynamic theory, depending on 
the local helical Mach number. The great simplification of the asymptotic approach 
is that only the flow field a t  the Mach radius need be calculated, and, since the local 
motion there is generally well into the supersonic regime, the necessity of complex 
transonic calculations is avoided. Additionally, it  will be seen that !Pi, is dominated 
by contributions from small regions very close to the leading and trailing edges, so 
the assumption of two-dimensionality will be a good one, provided of course that the 
Mach radius is not too close to the tip. The analysis below assumes that each airfoil 
section is in uniform rectilinear motion; the linear solution for a rotating blade is 
rather different, and has been described by Chapman (1988). and specifically, the 
Mach surface consists of a 2-sheeted cusped cone. Near the back face 

p - fj In Ix - x,(t)l ,  

and the corresponding Ti, is therefore singular like ln21x-x,l. The contribution to 
!Pij is, by precisely the arguments leading to (20) and (21) below, comparable with the 
leading-edge shock contribution, and not surprisingly, because ln21x1 and H ( x )  have 
essentially the same asymptotic Fourier transform. However, nonlinear effects 
excluded from Chapman’s analysis must imply that the rear sheet singularity will 
lead to contributions which are smaller, for large mB, than those associated with the 
leading-edge shocks, which must survive nonlinear modification. Similar remarks 
apply to the contribution from the cusped line, where the pressure on linear theory 
has a weak algebraic singularity. In any event we deal here with only the leading- 
and trailing-edge shocks. The relevance of the singularities of linear propeller theory 
to the practical problem remains an open question and will probably need numerical 
solution of the full nonlinear equations. 

Accordingly, the problem reduces to calculating the two-dimensional flow over a 
thin airfoil, with a uniform supersonic upstream velocity U, = M ,  c,,, parallel to the 
airfoil chord. We suppose that the flow is inviscid and isentropic, and assume small 
perturbation velocities u1 and u2, parallel and perpendicular to  the chord. The blade 
is taken to be symmetric about its chord, and has surface Y = h ( X ) ,  leading and 
trailing edges being sharp. Under these approximations, the density p is 

A strictly linear solution predicts that there will be shocks attached to the leading 
and trailing edges, parallel to the Mach lines, and with constant strength right out 
to infinity; the integral defining !Pi, would not be defined for such a flow. However, 
owing to accumulating nonlinearities, this solution breaks down far from the airfoil, 
although the linear theory is still valid for points on and near the blade surface. 
Calculation of !Pij therefore requires a uniformly valid expansion for U, such as that 
given by Van Dyke (1964) or Caughey (1969). 
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Van Dyke (1964) defines a strained coordinate s, implicitly given by 

I M: 
P2 y-p t  = s-a(r+l)-Yh’(s)+ ..., 

which Caughey (1969) determincs explicitly for a circular-arc airfoil. Then a 
uniformly valid first-order approximation to  the perturbation velocity above the 
airfoil is 

U, h‘(s) 
u1= -~ +..., 

P 

u, = Urh’(s) ..., I 
between shocks originating a t  the leading and trailing edges X = +f, and with u zero 
elsewhere. Of course, u1 will be symmetric about Y = 0, and u, antisymmetric. These 
shocks are not the straight lines predicted by linear theory, but are curved, and 
decay in strength with distance from the airfoil. For our purposes, it is only necessary 
to note that ul, u, become zero at infinity; an explicit inversion of (13) is not 
required. 

It now follows that 

exp (-ik,X)exp ( -iky Y) dXdY, (15) 
ui u .  

where uiuj can be written as 

with 

xL, xT being the X-coordinates of the leading and trailing shocks, as functions of Y ,  
and H denoting the unit step function. 

Substitution into (15), followed by use of Lighthill’s (1958) asymptotic Fourier 
transform method yields, for large mB, 

ZT 
Ytj - Lr [[h’(s)I2{aij+i(r- l)wall 6,Jexp (-ikxX) exp (-ik, Y )  dY 

kx 0 1% +Lr kx -m [ ~ h ~ ( s ) ~ z { a i j + ~ ( ~ - l ) ~ ~ a l l S i j } e x p ( - i k l X )  1:: exp(-ik,Y)dY, 

and we refer to  the two terms in (18) as Y& and Y; respectively. We note that to 
leading order in airfoil thickness X,, which is just the X-coordinate of the leading or 
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trailing shocks differentiated with respect to  Y ,  takes the value p at both the leading 
and trailing edges for Y = O+, and the value - p  for Y = 0-. The asymptotic 
evaluation of (1 8) will now depend on the value of the quantity k, + k, X, a t  the 
leading and trailing edges, just above and below the airfoil (i.e. at Y = O+ and 
Y = 0-), so we write 

k, + k, X ,  = O(mB)" (19) 

(where appropriate values of a will be discussed in a moment), and note that if for 
instance a > 0 in !P& a further integration by parts furnishes 

f, O+ 

-;. o+ 
y; N - {aij+i(T- l)M~al,6,,}[h'(s)]2exp (-ik,X)] , (20) 

indicating that the leading-order contributions to the integrated quadrupole strength 
come precisely from the leading and trailing edges. 

On the other hand, for a < 0 we can expand the phase function up to quadratic 
terms, and hence there will effectively be a stationary point of the integrand at  
Y = 0, and hence the method of stationary phase yields that 

xexp(-iik,X+$~sgn[X,,])1- , (21) 
-;. o+ 

again demonstrating the leading- and trailing-edge dominance. The formulae 
equivalent to (20) and (21) for Y; follow in exactly the same way. The quantities X, 
and X,, can be calculated for individual airfoil shapes, but for the sake of 
definiteness we shall consider the symmetric circular-arc airfoil, given by 

b 
h(X) = - (1 -a2), 

C 

where b is the maximum blade thickness, and the thickness :chord ratio b / c  is small. 
It should be emphasized that the analysis could be repeated for any given airfoil with 
a sharp nose. Caughey (1969) derives the following expressions for the shock 
gradients in the flow over a circular-arc airfoil, correct to first order in thickness: 

and 

(r+ 1)M: b -+..., 
2p2 c 

XyIy=o+ = PT 

where the upper and lower signs refer to leading and trailing edges respectively. It 
is easy to see, just from the symmetric location of the shocks about Y = 0, that 

We shall now consider what value a must take under typical operating conditions, 
X,I,,,- = -X,Iy-o+ and X,,I,-,- = Xyyly-o+. 

and for various observer positions. It can be shown by simple manipulation that 

sin0 1 ' cos 0 -Mx wx - cos 01 
k , f k , P  = f 
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where all quantities are evaluated a t  the Mach radius, and the modulus arises since 
P is always positive. There is a critical observer position, given by cos8 = M ,  
(corresponding to a reception angle of in), where both p and (25) vanish, and hence 
the Mach radius for this 8 coincides exactly with the sonic radius. Moreover, the a 
of (19) would be zero, and an asymptotic evaluation no longer possible. In the 
vicinity of this critical point our linearized supersonic theory will break down, and 
transonic analysis becomes necessary. However, our theory is perfectly valid on both 
sides of a narrow region around this value of 8, provided of course that the Mach 
radius remains within the blade span. For cos8 strictly greater than M,, it can be 
seen from (25) that k ,  + k , p  is large, and thus from (23) and (19) that a > 0, and that 
the expression for !P& in (20) holds. Conversely, for cos8 strictly less than M,, then 
k,+ k,P will vanish identically, and (23) gives 

Therefore, for sufficiently thin blades, a < 0 and !P$ is represented by (21). For thick 
blades, or for the higher harmonics, or for a very large number of blades (for instance 
in fans), the right-hand side of (26) would be large, and a > 0 here as well, but in the 
rest of this paper we shall restrict ourselves to consideration of typical propfan 
parameters, and take the a of !P$ to be negative when cos8 < M,. Now considering 
the Y; term, we have for cos8 strictly greater than M ,  that k,-k,P is zero (and 
hence 01 < 0) ,  whilst for cos 8 strictly less than M,, it  follows that k,- k ,  P is large, and 
a > 0. 

To summarize then, when cos8 > M,, the term Y& is given by (20), and !Pi by the 
equation equivalent to (21), whilst for cos8 < M ,  the situation is reversed. 

The expression k , + k , X ,  = 0 corresponds to the leading (or trailing) shocks 
having an exactly sonic velocity component in the observer direction (proved in 
Appendix B) ; one would expect the shocks to satisfy this sonic condition exactly, and 
not merely to leading order in thickness (cf. (26)). The explanation for this is that 
Hanson’s formula, (l) ,  has been developed by applying boundary conditions at the 
airfoil midchord, thus neglecting any thickness (at least in the wavenumbers k, and 
k,),  and therefore (under this approximation) the Ffowcs Williams & Hawkings sonic 
condition (for the shocks above the airfoil) reduces to k,+ k,P = 0, satisfied for 
observers positioned rearward of the critical observer position. For the shocks below 
the airfoil, the sonic condition becomes k,- k,P = 0, which is in turn satisfied for 
observers ahead of the critical region. The effect of non-zero thickness is to change 
the angle of inclination of the shocks to the X-axis (cf. (23)), but such shocks would 
presumably still satisfy the sonic condition exactly, if proper account could be taken 
of blade thickness. 

It can easily be seen that the value of Y$ in (20) (i.e. when the upper shock does 
not satisfy the sonic condition) is smaller, by a factor ( d ) - i ,  than the value given 
by (21) (i.e. when the sonic condition is  satisfied by the upper shock). It therefore 
follows that behind the critical observer position it is the upper shock that 
contributes most strongly to the radiation, whilst ahead of cos 8 = M ,  it is the lower 
shock that dominates. In comparison, the remaining contributions, as defined in (20), 
are small and can be neglected. 

It is worth remarking that the integral in (18) will converge because of the decay 
in perturbation velocity away from the airfoil. For instance, for a circular-arc airfoil, 
it is well known that the perturbation velocity falls off like Y-1, guaranteeing 
convergence. Such a decay is rather slow, and is of itself not sufficient to validate our 
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taking two-dimensional sections along the blade. However, it  is seen in (20) and (21) 
that it is the large value of mZ3 that ensures that the main contributions to Yii come 
from the leading and trailing edges, and that the original assumption of two- 
dimensionality is a good one. 

The leading edge/trailing edge dominance of this sound field is hardly surprising, 
given the non-smoothness of the blade slope a t  these points. This is also apparent in 
the similar problem of a thin airfoil accelerated in a straight line through supersonic 
velocities (see Lilley et aE. 1953), where the characteristic ' arrow-head ' shock 
structure (being the envelope of wavelets emitted by the leading and trailing edges) 
propagates out to  the far field, so that the waveform received at infinity is effectively 
that generated by point sources located a t  the sharp edges. 

4. Slow variation in chordwise wavenumber 
Since the chord length c will be rather smaller than the blade diameter D, a first 

approximation that k, is constant along the blade span will be made ; certainly the 
oscillation of the exponential factor in (20) and (21) will be much less rapid than that 
of the Bessel function of (1). In  that case, we suppose that k, takes its value a t  the 
Mach radius, so that, as remarked in $2, the dominant contribution to I' will come 
from the Mach radius (8). At this point the integrated quadrupole strength, for an 
observer a t  cos0 > M,, is given by an cquation of the form (21), as 

on neglect of the contribution from Y&. Then substitution of (27) into ( 1 1 )  yields a 
final expression 

( [ l-M,cosB 

8p, c i  M;2 p2 
xfm sin OMt Fo(r+ 1) 

Pg" - - exp imB t x -  

b sin(ik,+ix){(: )2 M," 
'(i) k; P2 -+k, +$V- 1 )  - (k:+ k:)} (28) 

for the quadrupole pressure, forward of the critical observer position, the analysis 
having been performed to leading order in thickness. Similarly, using (21), the 
pressure for observer angles strictly greater than c0s-l (M,) is given by 

( [ l -MXcos0  

Bp, c ~ M ; I Z p 2  
xf m sin OM, Po( r+ 1 )  

Pg" - - exp i d  fn- 

)2 

on neglect of the contribution from the lower shock. Whilst all this analysis has been 
performed for m > 0, the harmonic components for negative m can be simply 
obtained from the above by complcx conjugation. In (28) and (29), k,, k,, /3 and M,  
are all to  be evaluated a t  the Mach radius z = z*.  

These expressions for Pg" are clearly very much simpler than ( l ) ,  while retaining 
full dependence on all the relevant parameters. The predicted sound pressure level 



Lighthill quadrupole radiation in supersonic propeller acoustics 375 

I60 

150 

140 

130 

120 

110 

100 

90 

(4 

- 4 -  
Transonic 

transition region 

i’/: 
- 

- 
- 

- 

- 
. 

+ Flight 
direction 

Observer position blade lengths 

FIGURE 3. A prediction of the absolute sound pressure level (for the first harmonic) due to the 
quadrupoles of a 12-bladed single-rotation propeller, with M, = 1.4, C = 0.3 and b / c  = 0.02. The 
observer is positioned at a distance of 20 blade lengths from the propeller axis, and makes a 
traverse parallel to the axis; the abscissa is the observer position, relative to the propeller a t  
emission. (a) The flight Mach number is taken as M ,  = 0.75, typical of cruise conditions. ( b )  The 
flight Mach number is taken as M ,  = 0.2, typical of take-off conditions. 

due to the quadrupoles has been calculated, and is plotted in figure 3 ( a )  for typical 
parameters of supersonic tip rotation at cruise, and in figure 3(b )  at take-off. The 
range of these plots has been chosen so that the Mach radius remains within the bladc 
span for all observer positions considered. This is achieved simply by setting z* = 1 
in (8), which yields the bounding values of 6 as given by 
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FIGURE 4. A prediction of the increase in sound pressure levels due to the quadrupole radiation, 
above those predicted by linear theory : (a, b)  conditions as in figure 3 (u, b)  respectively. 

so that our analysis is valid for observer positions within c0s-l 8, < 8 < COS-~O-. 
Outside this angular range, the noise will be tip dominated, and analytical cal- 
culation of the required quadrupole would no longer be possible. I n  figure 4 (a, b )  
estimates are made of the effects of quadrupole radiation over and above linear 
theory at cruise and take-off; under these operating conditions the dominant surface 
source will be the thickness term, the noise due to  which is calculated simply, using 
Crighton & Parry's ( 1 9 9 0 ~ )  asymptotic approximation. The approximation is 
(Crighton & Parry 1990a, equations (4) and (9)) 
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where the notation is that  of the present paper. The quantity plotted in figure 
4 ( a ,  b )  is 2 O l o g , , P ~ / P ~ .  The quadrupole is seen to  be significant over the whole 
range of observer positions considered. 

5. Modification to include variation of wavenumber near the Mach radius 
I n  their (1990) paper, Parry & Crighton describe a method for including the effects 

of blade sweep in the asymptotic scheme for a supersonic propeller, by linearizing 
about the Mach radius. Exactly the same procedure may be used to account for 
phase variations along the blade span. 

Formally, the problem is to evaluate the first term in the asymptotic expansion 
of 

I =  [IoP(z) J,,(mB-$exp(-iik,)dz, (32) 

where P ( z )  contains no exponential dependence on mB and z. The dominant 
contribution will come from the vicinity of the Mach radius, so that 

I - l : P ( z )  J, ,(mH~)exp(-~ik,)dz,  (33) 

where the limits of integration 

z+ - = z*{1 f+[(mB)-i]} (34) 

can be determined by standard arguments. We linearize the problem about z*, so 
that 

with c ,  M,, Ex evaluated at z = z*. Now making the transformation 

z' = (mB)r - -1  '(S ) 
and using the asymptotic expansion of J,, in terms of an Airy function, and an 
integral representation of that Airy function, Parry & Crighton show that 

- iz't - iA(mB)&' dt dx'. (37) I z*P(z*) exp ( -@,) 
2 n d  

I- 

By making the substitution t = (mB)g T, interchanging the order of integration, and 
performing the z' integration, one finds 

There are two dominant components to this integral, the first from the stationary 
phase points of the exponential, and the second from the pole in the integrand at 

T = - (mB)id. (39) 
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The former can be calculated by standard analysis, but to find the pole contribution 
we make the transformations T+ (mB$ A + u, followed by u + w, where w is defined 
by 

w((mB)ik 1) = ~ 3 - ( m ~ ) Q ~ u " + ( m ~ ) i d 2 f 1 ~ u ,  (40) 

and it follows that the pole contribution to each term is 

exp [ - tiE, - iimBA3] 1 1y1e = +- 2sgn [(mB)iA2 rfi 13. 
z*P(z*) 

- mB - 

When I(mB)iAl > 1,  the contribution from the pole is zero and so the leading term in 
I comes from the stationary phase points, i.e. 

Conversely, when I(mB)idl < 1 the pole makes a non-zero contribution, which 
dominates that of the stationary points, so that 

exp [ -$5,-iimBA3]. I - -  
z*P(z*) 

,mB (43) 

Transition through the condition I(mB);A( = 1 needs a separate analysis, which will 
not be given here. 

These results are now applied to our quadrupolc problem, substituting (20) or (21) 
into (l),  and then using (42) and (43), together with their complex conjugates, to 
evaluate the subsequent integrals asymptotically. Thus we arrive a t  two quite 
distinct cases for the quadrupole noise; we just  present the cose > M, case here. 

Case A I(mB)tAl < 1 

( [ l-M,cosO MtFo I) 8p0 ci Mk2p2 
IT; m sin OMt F~O(T+ 1 

P?-- exp imB $- 

P2 I 2 
x Tsin b l c  ( ik ,  + an +bBA3) { (?+ k,) +$(r- 1 )  - (kz+ ki) , (44) 

k; 

where the bars on k ,  have been dropped. Note that the case A = 0 reduces to 
equation (28). 

Case B I ( ~ B $ A I  > i 

( [ l-M,cosO 

21 po ci M;r2 p2 
nm sin OM, Po 

P4" -- (r+ 1) (mB)-fexp imB in- 

x T s i n  b / c  [$kz++n+ (mB)%+A]sin{$[(mB)f]-+n} 
k; 

x { (2+ k u y  +$(r- 1) 2 (kz + ki) . (45) " I  P2 
Case A corresponds to  a relatively slow variation of k ,  along the blade span, the effect 
of which is merely to introduce a phase shift of+mBA3 into (28). On the other hand, 
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in Case B the wavenumber varies rapidly round the Mach radius, introducing a more 
drastic modification to (28), which we shall not consider further, since for all cases of 
practical interest A is small. 

6. Conclusions 
In this paper explicit expressions for the far-field acoustic pressure generated by 

the Lighthill quadrupoles of a supersonic propeller have been given, using the 
asymptotic approximation B + co . The noise has been proved to be dominated by a 
particular radial station, the Mach radius, the tiow around which is simply 
determined by linearized supersonic theory. In thc asymptotic limit, it  is shown that 
only the leading and trailing edges of the Mach-radius blade cross-section contribute 
to leading order, in justification of previous assumptions of two-dimensionality. In  
the vicinity of a critical observer position cos 0 = M,, the flow is transonic, but away 
from this point simple analytical formulae have been found. 

An absolute prediction of the pressure level due to the quadrupoles can now be 
easily performed, avoiding most of the problems associated with transonic flow and 
calculation of special functions encountered in other work on the subject. 

The authors are particularly grateful to  J. E. Ffowcs Williams and C. J. Chapman 
for many illuminating discussions. N. P. acknowledges receipt of an SERC 
studentship and the support of Rolls-Royce plc. 

Appendix A 

integral 
We necd to evaluate the first term of the asymptotic expansion for large mB of the 

where z* is supposed less than unity, but greater than zo, and S(z)  is a sufficiently 
slowly varying function. 

Following Hawkings & Lowson (1974), we use the integral representation of the 
Bessel function (Abramowitz & Stegun 1968) 

so that I is written as a double integral 

I = & 1;" IT exp (imB [: sin 4 - $1) z d$ dz, 

where the q4 integral can be interpreted as an integration along the propeller advance 
path. Application of the method of stationary phase (see Jones 1966), noting that the 
integrand has a stationary phase point a t  z = z*,  $ = 0, yields that 

-.* 
I - s (z*) -+ ... . 

lmBl 

Crighton & Parry (1990b) have calculated the next term in the series, and have 
proved it to be O(mB)-g and to be associated with the blade tip z = 1 .  

13 r I3 M 223 
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Appendix B 

radius, reduces to 

and without loss of generality we consider the leading-edge case. The velocity 
component towards the observer of the shock a t  the airfoil leading edge is then 

The condition k ,  + k , X ,  = 0, where all quantities are evaluated a t  the Mach 

cos 0 -M, +X, sin 0 = 0, (B 1 )  

wobs = V {cos 0 cos (a + 6) + sin 0 sin (a + 6)}, 

tan 6 = X,. 

(B 2) 

(B 3) 

where V is the normal velocity of the shock at the leading edge, and 6 is given by 

Strictly, 8 is the angle between the x-axis and the observer-hub vector, but will 
reduce to that between the x-axis and observer-source vector in the far field. Simple 
manipulation, and use of (B l ) ,  will now yield that 

‘obs - -- 
co coM,cos6’ 

and the condition that the shock remains attached, i.e. 

V = c0 M, cos 6, (B 5) 

demonstrates that  uObs = co, and thus the velocity component (in the observer 
direction) of the shock at  the blade leading edge is exactly sonic. 

Appendix C 

to be 
The radiation integral for the mth harmonic of steady loading noise can be shown 

Bexp ( imB [ $n- l - M x c o s ~ ] ) ~ ~ o ~ ~  Mt 7 0  ( mBMtsinO) 
1 -M, cos B PZ = Jnl, 4npO(i - M ,  cos e)  

x [( 1 + IVh12)]iik.& exp ( -ik, h/c) + fLexp (ik, h/c)) exp ( - ik,X) a d z ,  (C 1 )  

where the wave vector k has components (kx, k,) in the plane of blade cross-section, 
2h(X) is the thickness of the (symmetric) airfoil and fu and fL are the forces per unit 
area exerted by the fluid on the upper (Y > 0) and lower (Y < 0) surfaces of the blade 
respectively. The derivation of this formula, in which no assumption has been made 
about the magnitude of the thickness h, will be given in Peake & Crighton (1991). 
Hanson’s (1980) formula can be regained by taking the thin-blade limit (equivalent 
to the first term in a power series expansion with k, h/c small) and noting that in the 
limit h+O 

k-V;exp(-ik,h/c)+f,exp(ik,h/c)}+L, Ap, (C 2) 

(C 3) 

where Ap is the pressure jump across the (thin) blade, which is related to  the usual 
lift coefficient by 

Ap = +po Gc,. 
This expansion, however, is not valid when k,h/c is no longer small, and will 

certainly break down for large values of m (see (2));  a point noted by Hanson (1980). 
Use of the thin-blade approximation will therefore lead to errors in the higher 
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derivatives of the steady loading noise real-time waveform, and in its arrival time 
(owing to  the misplacement of the singularities) ; these errors will be of no 
consequence in measures of the most significant lower harmonics, and the correct 
form of the higher frequency tones could be recovered from (C 1)  (which is of course 
exact), together with an estimate of the force distribution on the blades (obtained 
from steady aerodynamic codes). 

The form of (C l ) ,  and its dependence on the parameter k, hlc ,  can be understood 
as follows. As a source passes through the Ffowcs Williams & Hawkings sonic 
condition it will be non-compact on the Mach wavelength scale, seemingly ruling out 
application of the thin-blade approximation. However, the non-zero blade rotation 
will in fact act to  limit this Mach radiation. The (finite) pressure level is governed by 
the time-scale of the source acceleration through the sonic condition, as demonstrated 
by Ffowcs Williams & Hawkings (1969) and as is evident in the preceding analysis 
from the dominance of equation (A 3) by some asymptotically small (but non-zero) 
region around the stationary phase point q5 = 0. Since the whole of the source history 
is included in the derivations of (1) and (C l ) ,  the above mechanism is fully accounted 
for, and the asymptotic formulae calculated from them genuincly represent the finite 
Mach radiation. From (C 1) it is clear that what actually governs the applicability of 
the thin-blade approximation is whether or not the blade section is compact on the 
transverse wavelength (i.e. hi1)  scale, or equivalently whether the retarded time 
difference between sources on opposite blade surfaces (but at the same chordwise 
position) can be ignored. The wavenumber k, is Doppler shifted, but, as might now 
be expected, only by the steady rectilinear component of the motion (leading to  the 
factor (1 -M, cos 19-l in (2)), and since the flight Mach number is taken as subsonic, 
k, can never be infinite. The non-uniformity in Hanson’s expansion of (C 1)  for small 
h therefore arises only for very large m and, as stated, only introduces errors in the 
arrival time and high derivatives of the pressure. 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEQUN, I. A. 1968 Handbook of Mathematical Functions. Dover. 
BLACKBURN, H. W. 1982 Quadrupoles in potential flow. J .  Fluid Mech. 116, 507-530. 
CAUCHEY, D. A. 1969 Second-order wave structure in supersonic flows. NASA Contract Rep. 

CHAPMAN, C. J. 1988 Shocks and singularities in the pressure field of a supersonically rotating 
propeller. J. Fluid Mech. 192, 1-16. 

CRIGHTON, D. G. & PARRY, A. B. 1990a Asymptotic theory of propeller noise - Part 2 : Supersonic 
single-rotation propeller AZAA J. (submitted). 

CRICHTON, D. G. & PARRY, A. B. 1990b Higher approximations in the asymptotic theory of 
propeller noise AZAA J. (submitted). 

CR-1438. 

DEMING, A. F. 1937 Noise from propellers with symmetrical sections at  zero blade angle. NACA 
TN 605. 

DEMINC, A. F. 1938 Noise from propellers with symmetrical sections a t  zero blade angle, 11. 

FARASSAT, F. 1981 Linear acoustic formulae for calculation of rotating blade noise. AZAA J. 19, 

FFOWCS WILLIAMS, J. E. 1979 On the role of quadrupole source terms generated by moving 

FFOWCS WILLIAMS, J. E. 6 HAWKINGS, D. L. 1969 Sound generation by turbulence and surfaces 

GARRICK, I. E. & WATKINS, C. E. 1954 A theoretical study of the effect of forward speed on the 

NACA TN 679. 

1122-1 130. 

bodies. AIAA Paper 74-0576. 

in arbitrary motion. Phil. Trans. R .  Soe. Lond. A 264, 321-342. 

free-space sound-pressure field around propellers. NACA Rep. 1198. 
13-2 



382 N .  Peuke and D. G. Crighton 

GUTIN, L. 1936 On the sound field of a rotating airscrew. XA4C'A TM 1195. 
HANSON, L). B. 1980 Helicoidal surface theory for harmonic noise of propellers in the far field. 

HANSON, D. R .  1983 Compressible helicoidal surface theory for propeller aerodynamics and noise. 

HANSON. D. B.  & FINK, M. R. 1979 The importance of yuadrupole sources in predict)ion of 

HAWKTNGS, D. L. & LOWSON, M. V. 1974 Theory of open supersonic rotor noise. J .  Sound Vib. 36; 

.JONES> D. S. 1966 Generalized Functions. McGraw-Hill. 
TJGHTHILL, M. J .  1952 On sound generated aerodynamically. 1. General theory. Proc. R .  Soc. 

Lond. A 211, 564-587. 
LIGHTIIILL, M. J. 1958 .4n Introduction to Fourier Analysis and Deneralised Functions. Cambridge 

IJniversity Press. 
LILLEY, G.  M. ,  WESTLEY, R., YATES. A. H. & BUSIKG. ,J. It. 1953 Some aspects of noise from 

supersonic aircraft. J .  R .  Aeronaut. Soc. 57, 396-414. 
LYNAM, E. J. H .  & WEBB, H. A. 1919 The emission of sound by airscrews. Adeisory CvmnLittee for 

Aeronautics 624. 
PARRY, A. B. 6 CRIGHTON, D. G .  1989a Asymptotic theory of propeller noise - Part 1 : Subsonic 

single-rotation propeller. AZAA J .  27. 1184-1 190. 
PARRY. A. B. & CRIGHTON, D. G. 1989h Prediction of counter-rotation propeller noise. AIA.4 

Paper 89-1141. 
PARRY, A. B. & CPIGHTON. D. G.  1990 Spanwise interference effects in the asymptotic theory of 

propeller noise. AIAA J .  (to be submit,trd). 
PEAKE, N. & CRIGIITON, D. C. 1991 Frequency domain radiation integrals for the Lighthill 

quadrupole radiation. J .  Fluid Mech. (to be submitted). 
SCHMITZ, F. H. & Yrr, Y .  H. 1979 Theoretical modelling of high-speed helicopter impulsive noise. 

J .  Am. Helicopter 8oc.  24, 10-19. 
VAN DYKE, M. 1964 Perturhation Methods in Fluid Mechanics. Academic. 

AZAA J .  18, 1213-1220. 

AZAA J .  21, 881-889. 

transonic tip speed propeller noise. J .  Sound Vib .  62, 19-38. 

1-20, 


